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ABSTRACT 

This  paper deals w i t h  a programming language under development a t  

NASA's Langley Research Center f o r  t he  CDC STAR-100. 

the  language are  t h a t  i t  be basic i n  design and ab le  t o  be extended as deemed 

The design goals f o r  

necessary t o  serve the  user community, capable o f  t he  expression o f  e f f i c i e n t  

a lgor i thms by f o r c i n g  the  user t o  make t h e  maximum use o f  t he  spec ia l i zed  

hardware design, and easy t o  implement so t h a t  t he  language and compiler 

cou ld  be developed w i t h  a minimum o f  e f f o r t .  The key t o  the  language was i n  

choosing the  bas ic  data types and data s t ruc tu res .  Scalars, vectors, and 

s t r i n g s  a r e  a v a i l a b l e  data types i n  the  language. 

an associated s e t  o f  operators which cons is t  p r i m a r i l y  o f  t h e  operat ions 

prov ided by the  hardware. 

r e s t r i c t e d  form o f  t he  array.  

i n  ar rays,  f o r c i n g  the  user t o  vec tor ize  sca la r  data when i t  i s  necessary t o  

s t r u c t u r e  i t .  

such as r e a l  ar rays s ince t h e  h igh  l e v e l  vector  machine i n s t r u c t i o n s  may be 

used t o  deal w i t h  them d i r e c t l y .  

Each bas ic  data type has  

The only  data s t r u c t u r e  i n  t h e  language i s  a 

Only vec tor  and s t r i n g  data types may be s to red  

This  permi ts  the  most e f f e c t i v e  use o f  t h e  machine f o r  e n t i t i e s  

This  paper i s  a r e s u l t  o f  work s ta r ted  under NASA Grant NGR 47-102-001 wh i l e  
the  authors were i n  residence a t  ICASE, NASA Langley Research Center. 



INTRODUCTION 

Vector and p a r a l l e l  processing machines o f f e r  new problems i n  t h e  area 

of language design. Besides t h e  goal o f  designing the  language which i s  best  

s u i t e d  t o  t h e  user f o r  h i s  p a r t i c u l a r  app l i ca t i on ,  t he re  i s  t he  added problem 

of making e f f e c t i v e  use o f  t he  spec ia l i zed  a rch i tec tu re .  The r e l a t i v e l y  h igh  

l e v e l  nature o f  t he  machine p lays an impor tant  r o l e  i n  the  l e v e l  o f  t he  

languages designed f o r  i t .  

In general, there  a r e  th ree  approaches t h a t  might be examined f o r  these 

machines. 

may be expanded i n  an attempt t o  handle t h e  new vec tor  or p a r a l l e l  c a p a b i l i t i e s .  

Second, a very  h igh  l e v e l  language r e l a t i v e  t o  the  new hardware nay be designed 

o r  adapted. 

by the  c h a r a c t e r i s t i c s  o f  the  hardware i n  what amounts t o  a “bottom up’! approach 

t o  language design. 

F i r s t ,  an e x i s t i n g  sequent ia l l y  o r i en ted  language, such as FORTRAN, 

The t h i r d  choice i s  a language which i s  i n t e n t i o n a l l y  in f luenced 

This paper deals w i t h  the  design and mo t i va t i on  f o r  a p rog raming  language, 

p resen t l y  c a l l e d  SL/1, under development a t  NASA’s Langley Research Center f o r  

the  CDC STAR-100. The design goals f o r  t he  language a re  t h a t  i t  be: 

1. basic  i n  design. That i s ,  language fea tures  were inc luded on ly  if 

they were f e l t  t o  be absolute ly  necessary, 

ab le  t o  be extended as deemed necessary t o  serve the  user community, 2. 

3 .  capable o f  expressing e f f i c i e n t l y  executable a lgor i thms by f o r c i n g  

the  user t o  make maximum use o f  the  spec ia l i zed  hardware design, . 

easy t o  implement so t ha t  t h e  language and compiler could be developed 

w i t h  a minimum o f  e f f o r t .  

4 .  

For these reasons, t he  l e v e l  o f  t h e  language i s  vector  a r c h i t e c t u r e  depen- 

dent and therefore d i rec ted  a t  the l e v e l  o f  t h e  machine; i.e., t h e  t h i r d  choice. 



DESIGN JUSTIFICATION 

Some j u s t i f i c a t i o n s  w i l l  be g iven on why t h i s  approach s a t i s f i e d  the  

design goals .  A t  t h e  lower l e v e l ,  a sequen t ia l l y  o r i en ted  language could be 

extended by incorpora t ing  some form o f  vec tor  processing c a p a b i l i t y .  Th is  i s  

the  approach being taken by CDC i n  t h e  development o f  t h e i r  FORTRAN compiler 

f o r  t he  STAR-100. However, these extensions i n e v i t a b l y  take on t h e  appearance 

o f  patches t o  t h e  bas ic  language design and va luable support cons t ruc ts ,  such 

as appropr ia te data and c o n t r o l  s t ruc tu res ,  a re  usua l l y  missing. Th is  can 

leave the  language w i t h  an i ncons is ten t  and cumbersome design. 

Cer ta in ly ,  an implementation o f  FORTRAN, perhaps w i t h  extensions, i s  

needed t o  a l low e x i s t i n g  programs t o  run  on the  new machine. 

b e n e f i t  o f  being we l l  known and used by the  re levan t  programming community. 

FORTRAN has t h e  

However, t h i s  f a m i l i a r i t y  i s  a l so  a drawback s ince the  user i s  i n  t h e  h,abit 

o f  w r i t i n g  algori thms i n  FmTFtAN which are  centered around the  manipulat ion of 

sca la r  quan t i t i es .  For a machine l i k e  the  STAR, t h i s  i s  no t  t h e  appropr ia te  

l e v e l  o f  a lgor i thm expression f o r  making best  use o f  t h e  hardware. Recognizing 

the  equivalence o f  sequen t ia l l y  w r i t t e n  a lgor i thms t o  a s i n g l e  machine i n s t r u c -  

t i o n  i s  impossible i n  the  general case, and i s  o f t e n  i n e f f i c i e n t  i n  those 

specia l  cases that are worth de tec t ing .  

FORTRAN evaluates a polynomial w i t h  a s e t  o f  c o e f f i c i e n t s  A and for set of 

For example, t h e  f o l l o w i n g  p iece o f  

argument values X :  

LIMIT = N + l  
DO 10 J = l , M  
VALUE(J) = X(J)*A( 1) 
DO.Il0 I = 2,LIMIT 

10 ' VALUE(J) = (VALUE(J)+A(I)*X(J) 

This i s  equiva lent  t o  one machine i n s t r u c t i o n  on t h e  STAR. Recognit ion of 

t h i s  f a c t  by specia l  case i s  q u i t e  d i f f i c u l t  and c o s t l y .  
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Thus, the implementation o f  a compiler f o r  the-language i s  a major e f f o r t  

s ince  i t  requ i res  the  t r a n s l a t i o n  o f  a l l  o f  FORTRAN, t h e  new specia l  fea tures ,  

along w i t h  any number o f  spec ia l  recogn i t ion  cases t h a t  a re  t o  be included. 

The choice o f  a language which i s  much h igher  than the  l e v e l  o f  t h e  machine 

i s  t h e o r e t i c a l l y  a b e t t e r  choice. An e x i s t i n g  language l i k e  SETL [l] could  be 

chosen, o r  a new language could be designed. 

the  very h igh  l e v e l  nature o f  t he  language would most l i k e l y  e l im ina te  t h e  need 

f o r  extensions. 

a lgor i thms t h e o r e t i c a l l y  s u i t a b l e  f o r  e f f i c i e n t  execut ion on the  machine. 

Re la t i ve  t o  the  design goals, 

I t  would c e r t a i n l y  permi t  t he  easy expression o f  h igh  l e v e l  

The 

p r a c t i c a l  implementation o f  the  op t im iza t ion  techniques 

The primary drawback t o  t h i s  high l e v e l  of language 

the  major desiqn and implementation e f f o r t  invo lved.  Un 

l i k e  SETL i s  chosen, the  language design e f f o r t  a lone i s  

undertaking. I n  e i t h e r  case, t he  implementation of such 

s another question. 

however, would be 

ess an e x i s t i n g  language 

an extens ive research 

a 1 anguage i s I beyond 

I n  add i t i on ,  compile t ime f o r  programs the  resources a v a i l a b l e  t o  t h e  pro jec t .  

w r i t t e n  i n  t h e  language would be i no rd ina te l y  high, and there  are  some s t rong 

eve1 because f e e l i n g s  i n  the  user comnunity against p rog raming  a t  so h igh  a 

of t h e  l ack  o f  user con t ro l  over run t ime e f f i c i ency .  

SL/1 i s  designed a t  a l e v e l  t h a t  c a p i t a l i z e s  on vector arch 

corresponds c l o s e l y  t o  t h e  l e v e l  o f  t he  machine. I n  designing a 

tec tu re ,  and 

language a t  

t he  machine l e v e l ,  care must be given t o  spec i f y ing  a consis tent ,  easy t o  use, 

r e l i a b l e  language which makes use o f  t h e  power o f  t he  hardware w i thout  exposing 

the  user t o  hardware idiosyncrasies. The purpose o f  t h i s  design e f f o r t  i s  n o t  

a h i g h  l e v e l  assembly language, but a h igh  l e v e l  a lgo r i t hm ic  language t h a t  

would p rov ide ’ the  user w i t h  the  appropriate s e t  o f  data and con t ro l  s t ruc tu res  

fo r  expressing a lgor i thms i n  a readable and e f f i c i e n t l y  executable form. 



The language design i s  r e l a t i v e l y  simple, whicK makes i t  easy t o  extend. 

The bas ic  conservative language design was mot ivated p a r t i a l l y  by t h e  design 

f o r  t h e  base language SIMPL - T [ 2 ]  o f  the  SIMPL f a m i l y  o f  programming languages 

[3 ] .  SL/1 i s  meant t o  be a base language f o r  a poss ib le  f a m i l y  o f  languages, 

each o f  which would serve a specia l  a p p l i c a t i o n  area o f  the  user community. 

Each language could be designed as an extension t o  t h e  base language and the 

c o m p l i l e r  b u i l t  as an extension t o  the base compiler. 

I t  i s  d i f f i c u l t  t o  spec i fy  a cons is ten t  design l e v e l  f o r  a b i - l e v e l  (both 

sca la r  and vector i n s t r u c t i o n s )  machine l i k e  the STAR. However, the  s p e c i f i -  

c a t i o n  o f  basic data types and data s t ruc tu res  i n  SL / l  solve both the  consis-  

t e n t  l e v e l  problem and the problem o f  f o r c i n g  the  user i n t o  making maximum use 

of the  machine hardware. 

vectors  ( r e a l  vector,  s h o r t  r e a l  vector ,  i n t e g e r  vector,. . . ) , and s t r i n g s  

(character  s t r ing ,  b i t  s t r ing, .  . . )  are a v a i l a b l e  data types i n  the  language. 

The o n l y  data s t r u c t u r e  i n  the  language i s  the  array,  and o n l y  vector  and s t r i n g  

data types may be s to red  i n  arrays.  Thus, the  user i s  forced t o  vec tor ize  

Scalars ( r e a l ,  s h o r t  r e a l ,  in teger ,  character,. . .),  

s c a l a r  data when i t  i s  necessary t o  s t r u c t u r e  it. 

t i v e  use o f  the machine f o r  e n t i t i e s  such as r e a l  ar rays s ince the  h igh  l e v e l  

vector  machine i n s t r u c t i o n s  may be used t o  deal w i t h  them d i r e c t l y .  

This permi ts  the  most e f f e c -  

BASIC DESIGN 

Data Types and Operators 

The STAR hardware i s  capable of operat ing on scalars ,  vectors,  and s t r i n g s .  

Scalars include 32- and 6 4 - b i t  q u a n t i t i e s  ( o s t e n s i b l y  f l o a t i n g  p o i n t  numbers) 

w i t h  ar i thmet ic ,  l o g i c a l ,  and r e l a t i o n a l  operat ions.  

normal and sparse. 

t i t i e s  occupying contiguous storage loca t ions .  

Vectors a re  of two types: 

Normal vectors  c o n s i s t  o f  a sequence of 32- o r  6 4 - b i t  quan- 

Sparse vectors  a re  described by a 
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sequence o f  nonzero elements and an associated c h a r a c t e r i s t i c  vec tor  ( b i t  

p a t t e r n ) .  There are sets  o f  h igh  l eve l  hardware operat ions ‘ for both o f  these 

vector  types. S t r ings  on the STAR are s i m i l a r  t o  vectors  except t h a t  they 

c o n s i s t  o f  sequences o f  b i t s  o r  bytes o f  in format ion f o r  which there  i s  no 

sca la r  equiva lent .  They a l s o  have a s e t  o f  h igh l e v e l  hardware operators 

associated w i t h  them. 

I n  SL/1, an attempt was made t o  d e f i n e  data types i n t o  a more organized 

and complete c l a s s i f i c a t i o n  scheme, and t o  prov ide the  user w i t h  a more u n i f i e d  

and s p e c i f i e d  s e t  o f  data elements. Each data type may n o t  have an exact 

counterpar t  i n  the  STAR hardware, but i t  i s  usua l ly  e a s i l y  simulated. The 

sca la r  q u a n t i t i e s  are d i v i d e d  i n t o  s i x  types. They are:  

( a )  i iea i  - 6 4 - b i t  f loatcnc; pc j f l t  

(b)  Short Real - 3 2 - b i t  f l o a t i n g  p o i n t  

( c )  In teger  - 4 8 - b i t  in teger  

( d )  Short In teger  - 2 4 - b i t  i n t e g e r  

(e) Logica l  - s i n g l e  b i t  

( f )  Character - 8 - b i t  byte 

The i n t e g e r  q u a n t i t i e s  a r e  j u s t  f l o a t i n g  p o i n t  numbers w i th  zero exponents. 

Vector data types i n  SL/1 a r e  def ined as f i x e d  l e n g t h  one-dimensional ar rays 

c o n s i s t i n g  o f  elements of a speci f ied sca la r  type. Present vector  types inc lude:  

(9)  Real vector  

(h) Short  r e a l  vector  

( i )  In teger  vector  

( j )  Short i n t e g e r  vector  

( k )  Logical  vector 

Although the hardware i s  a l s o  ab le  t o  deal w i t h  sparse vectors,  they are  n o t  

inc luded i n  the  f i r s t  vers ion o f  SL/1. 

vectors  w i l l  n o t  be considered u n t i l  t h e  f i r s t  language extension. 

I n  the i n t e r e s t  of s i m p l i c i t y ,  sparse 

- 5 -  



In contrast t o  vectors, s t r ings in SL/1 are  defined to  be executian time 

variable sequences of a specified scalar type. 

include only : 

Present s t r ing  data types 

(R) Character string 

Vectors and s t r ings may be declared w i t h  the CONTROLLED a t t r i bu te  i n  

which case storage can be allocated and freed a t  r u n  time. 

The s e t  of operators available i n  the language i s  considerable. I t  

essent ia l ly  includes most of those which the hardware can deal w i t h  d i rect ly  

p l u s  whatever minimal extensions were necessary t o  handle the new data types. 

One approach to the syntax i s  t o  define a single symbol f o r  each operator as 

has been done i n  APL [4]. However, the res t r ic t ion  imposed by available char- 

acter se t s  makes th i s  impractical. 

SL/1 operators consist of a meaningful sequence o f  l e t t e r s  w i t h  a period as 

prefix and suffix, as i n  PORTRAF!, and monadic and t r iad ic  operators are  written 

Where no obvious symbol ex is t s ,  dyadic 

a s  function cal ls .  For example, the polynomial evaluation written i n  FORTRAN 

above i s  written i n  SL/1 as: 

VALUE :=A . E V L .  X ; 

where, as before, VALUE i s  the vector of resu l t s ,  A i s  

and X i s  the vector of argument values. 

i s  included i n  Appendix 2. 

An extensive 

All declarations i n  SL/1 are expl ic i t  and are  sim 

Algol-like format; e .g . ,  

REAL VECTOR [1..10] A ;  

the vector of coefficients,  

i s t  of the vector operators 

l a r  t o  the standard 

/ *  Declaration of a vector w i t h  ten real elements w i t h  

subscript range from 1 to  lo*/ 

CHARACTER STRING [lo01 B; 

/*  Declaration of a character str ing w i t h  a maximum length 

of one hundred characters */ 
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CONTROLLED REAL VECTOR [ 1001.. 110003 C; 

/* Declaration of a vector w i t h  10,000 real elements for  

which no storage i s  reserved */ 

Two aspects of the.language of particular in te res t  a r e  the referencing 

of vectors and s t r ings ,  and the syntax of vector and string constants. 

single element of a vector or string i s  referenced merely by specifying the 

required index i n  the normal way; e.g., A [ 5 ]  := 1; B[21 := ' C ' .  ,. The STAR-100 

A 

hardware has the useful f a c i l i t y  o f  permitting a reference to  a vector or 

s t r ing t o  be of fse t ,  so t h a t  a given instruction may begin processing a vector 

or string a t  some p o i n t  other than i t s  beginning. 

elements to  be processed may be se t  as a length. 

SL/1 t o  a l low subvectors and substrings t o  be specified a s  a f i r s t  element, 

l a s t  element p a i r ,  or a f i r s t  element, length pair .  

elements 12 through 16 inclusive of a vector V, the syntax is  V[12..16] or 

V [  12!5]. 

the mathematical statement of algorithms. A similar substring notation i s  

I n  addition, the number of 

T h i s  capabili ty i s  used i n  

For example, t o  reference 

Both notations a re  provided because of the i r  frequent occurrence i n  

used for  s t r ings.  

Vector constants i n  SL/1 are element sequences which can be written out 

i n  f u l l .  

constants a re  treated exactly as they a re  i n  SNOBOL. 

For example, \1,2,3,4\ i s  a four element vector constant. S t r i n g  

More complex constant 

vectors and s t r ings can be created using the normal operators of the language, 

such as replication and concatenation. 

Data Structures 

The only data structure provided by SL/1 is  the array w i t h  the res t r ic t ion  

The purpose of th i s  res t r ic -  tha t  each element can only be a vector or s t r ing.  

t ion i s  to  ensure that  the user structures information as vectors rather than 

-7- 



declaring arrays of scalars and attempt to use them-as one would in a tradi- 

tional programing language. This requirement forces the handling of linear 

sequences of data in a more efficient manner. 

A one-dimensional array of vectors or "vector array'' is similar in 

nature to a matrix. 

data structure is the inherent symmetry of the indices. 

tends to regard referencing rows and columns of a matrix as equivalent. If 

a matrix is stored rowwise on the STAR-100, then any operations on the rows 

can use the machine's vector processing capability directly. 

operations are faced with tremendous overhead since the elements of a column 

do not occupy sequential storage locations. Any programming language which 

provides a multidimensional array capability with scalar elements must also 

provide facilities for user control over how the array is stored, and warn the 

user when his references to the array are inefficient. 

The problem of providing a matrix or any multidimensional 

For example, the user 

However, column 

The vector array avoids these problems. It i s  the user's responsibility 

to interpret the vectors in the array as he wishes. 

element of a one-dimensional array has been used to store a row of a matrix, 

then row operations are easily programmed and efficiently implemented. 

to access a column, the user must explicitly program the element by element 

reference pattern and the associated inefficiency is clear. 

For example, if each 

However, 

A comnon occurrence in scientific programming is the triangular system, 

and it is usually left to the programer's ingenuity to ensure that it is 

efficiently stored. 

computing, SL/1  allows vector arrays to be declared-such that the lengths of 

the element vectors form an arithmetic progression. 

of the first vector and the increment one, a triangular system can be stored. 

Since the STAR-100 will be used primarily for scientific 

By making both the length 
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The dec la ra t i on  o f  a vector  ar ray i n  which a l l  t h e  element vectors  a re  

o f  t he  same leng th  cons is ts  o f  dec la ra t ion  in fo rmat ion  f o r  the element vectors, 

fo l lowed by the  word ARRAY fo l lowed by the  a r ray  dimensional i n fo rma t ion  con- 

ta ined i n  parenthesis; e.g., 

REAL VECTOR [101..300] ARRAY ( l . . l O )  X; 

/* 

elements long. */ 

X cons is ts  o f  t e n  vectors, each o f  which i s  two hundred 

REAL VECTOR [ 51. .lo03 ARRAY (1. .20, 1.. 10) Y; 

/* Y cons is ts  o f  a 20x10 array,  each element o f  which i s  

a vector  w i t h  50 elements. */ 

The e n t i r e  vector  which i s  t h e  ith element o f  X may be referenced us ing 

the n o t a t i o n  X ( i ) .  ?he jth element o f  t h a t  p a r t i c u l a r  vector  may be referenced 

by w r i t i n g  X ( i ) [ j ] .  

be referenced as Y (  i ,j) . 
S i m i l a r l y ,  t h e  vector  which i s  t he  i,j element o f  Y may 

A t r i a n g u l a r  system i s  declared s i m i l a r l y ,  bu t  t he  f i r s t  two parameters 

A t h i r d  parameter w i t h i n  the  brackets de f i ne  on ly  the  f i r s t  element vector .  

i s  used t o  spec i f y  the  l eng th  d i f f e rence  between adjacent element vectors; e.g., 

REAL VECTOR [ l . . l  BY 11 ARRAY ( l . . lO )  Y; 

/* Y i s  a t r i a n g u l a r  system cons is t i ng  o f  t en  vectors, 

the  f i r s t  o f  leng th  one, and the  i + l s t  vector  one element 

longer than the  ith. Thus, f o r  Y, the  i t h  element vec tor  

i s  o f  l eng th  i.*/ 

If  t h e  f i r s t  vec tor  l eng th  i s  greater  than one, a negative d i f f e r e n c e  may 

be s p e c i f i e d  i n d i c a t i n g  decreasing vector lengths.  

S t a  ternen t s 

I n  an S L / 1  assignment statement, t h e  r i g h t  hand s ide  may produce a scalar ,  

s t r i n g ,  o r  vec tor  value. I f  a scalar  o r  s t r i n g  i s  t he  r e s u l t ,  assignment takes 
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place i n  the  normal way. However, when t h e  r i g h t  hand s ide  y e i l d s  a vector ,  

t he  semantics o f  t he  operator  are more complex because of unique fea tures  o f  

t he  STAR-100 vector hardware. 

Many o f  the STAR vector  i n s t r u c t i o n s  a l l ow  storage of t he  r e s u l t  vec tor  

t o  be c o n t r o l l e d  by a b i t  vector. 

r e s u l t  element is  stored if the  ith b i t  i s  one; otherwise, i t  i s  discarded. 

The hardware also a l lows the  opposi te  operation; i .e.,  s t o r e  on zero, d i sca rd  

on ones. 

I f  a b i t  vec tor  i s  used, then the  i t h  

Th is  fea ture  o f  vector  assignment e s s e n t i a l l y  makes the  assignment operator  

t r i a d i c .  

l e f t  hand s ide  o f  the  assignment operator .  

surrounded by parentheses; e.g., 

I n  SL/1, t he  r e s u l t  v a r i a b l e  and b i t  vec tor  a re  both w r i t t e n  on t h e  

They are  separated by a coma and 

(C,Z) := A+B; 

I n  t h i s  example, C i s  t h e  r e s u l t  f i e l d  and Z i s  t h e  b i t  vector  used t o  

c o n t r o l  t he  s to re  operations. 

Most o f  the common y occur r ing  c o n t r o l  statements a re  ava i l ab  e i n  SL/1. 

For example, the WHILE, REPEAT UNTIL, CASE, FOR, and I F  statements a re  provided. 

Compound statements are bracketed by language keywords wherever poss ib le  r a t h e r  

than BEGIN and END. 

(FI ,  ESAC, etc.) t o  d e l i m i t  t he  end o f  a statement has n o t  been fo l lowed s ince 

the  authors feel t h a t  t h i s  can be confusing. 

w i t h  a s i n g l e  l e t t e r  s u f f i x  added t o  i n d i c a t e  t h e  type o f  statement. 

The recent  p r a c t i c e  o f  us ing a keyword s p e l t  backwards 

Instead, t h e  word END i s  used 

For example, 

t he  f u l l  form of the  I F  statement i s :  

I F  <Boolean Expression> THEN <Statement L i s t >  

ELSE <Statement L i s t >  END1 
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CONCLUSION 

A t  t h i s  w r i t i n g ,  the design o f  SL/1 i s  i n  the f i n a l  stages o f  ref inement. 

Poten t ia l  STAR users have been a c t i v e l y  invo lved i n  the design process by 

programming algor i thms i n  the language, and by g i v i n g  feedback on language 

constructs.  

Three t y p i c a l  SL/1 program segments a re  included i n  Appendix 1 as examples. 
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APPENDIX 1 

(a)  /* Th is  program segment forms t h e  product o f  two mat r ices  by repeated 

column mu1 t i p l i c a t i o n s  r a t h e r  than us ing inner  products. 

a r ray  A 

columns o f  a 3 x 4 m a t r i x  and C w i l l  be used t o  ho ld  columns of 

t he  product. */ 

The vec tor  

i s  used t o  s t o r e  t h e  columns o f  a 5 x 3 mat r ix ,  B holds the  

REAL VECTOR [1. .5]  ARRAY (1..3) A; 

REAL VECTOR [1. .3]  ARRAY (1..4) B; 

REAL VECTOR [1. .5]  ARRAY (1..4) C; 

/*  Assume A and B a re  i n i t i a l i z e d .  */ 

FOR J FROM 1 TO 3 DO 

C ( J )  := 0 ; 

FOR I FROM 1 TO 3 DO 

C(J) := C ( J )  + A ( I ) * B ( J ) [ I ]  ; 

ENDF; 

ENDF; 

(b) /* This  program segment solves t h e  system AX = B where A i s  lower 

t r i a n g u l a r .  The vec tor  a r ray  A holds t h e  rows o f  a lower t r i a n g u l a r  

matrix, wh i le  the  vectors  X and 6 a r e  column vectors .  */ 

REAL VECTOR [l..l by 11 ARRAY ( l . . l O O )  A; 

REAL VECTOR [1..1001 X,B; 

/* Assume A and B a re  i n i t i a l i z e d  */ 

X i 1 1  := B [ 1 l k A ( l ) [ l I ;  

FOR I FROM 2 TO 100 DO 

X[I] :=(B[Il  - (X[1!1-1] .DOT. A ( I ) [ l ! I - l ] ) ) / A ( I ) [ I ] ;  

ENDF ; 
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) /* This piece o f  code solves a u n i t  lower tr iangular system LX = B as 

shown i n  the diagram. The vector array L contains the N column 

vectors o f  the matrix and each vector i s  o f  length BETA. 

i s  formed i n  the vector B. */ 

T h e  solution 

REAL VECTOR [BETA] ARRAY ( N )  L; 

REAL VECTOR [N] B; 

REAL VECTOR [BETA] T; 

FOR J FROM 1 TO N-BETA DO 

T :=B[J] * L(J)[2..BETA+l] ; 

B[J=l..J+BETA] := B[J=l..J+BETA] - T ; 
ENDF; 

FOR J FROM N-BETA+l TO N-1 DO 

T[l..N-J] := B[J] * L(J)[2..N-J+1] ; 

B[J+l..N] := B[J+l..N] - T[l..N-J] ; 

ENDF; 

. 
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APPENDIX 2 

. 

. 

Partial l i s t  o f  SL/1 vector operators: 

FLOOR ( ) 

C E I L (  ) Element by element ceiling o f  a vector. 

SQRT( 1 Element by element square root.  

R E V (  Reverse a vector. 

SUM( 1 Sum o f  a vector's elements. 

PRD( 

Element by element floor o f  a vector. 

Product o f  a vector's elements. 

MAX( Maximum element o f  a vector. 

MIN( 1 Minimum element o f  a vector. 

< 

<= 

>= 

> 

+ 
- 
* 

/ 
** 

Element by element relational operators. 

The result i s  a b i t  vector. 

Element by element a d d i t i o n .  

Element by element subtraction. 

E l  ement by el emen t mu1 t i  p l  i cati on. 

Element by element division. 

El emen t by el emen t exponen t i  a t  i on. 

.DIV. 

.MOD. Element by element modulus. 

.CON. Concatenate two vectors. 

Element by element integer division. 

.REP. Repeat a vector. 

. DOT. .Vector dot  product. . 

. EVL . Evaluate a polynomial 

. AVG . El ement by El emeht average. 

. CMP . Compress a vector according t o  a b i t  Vector. 


